DR.-ING. HABIL. HERMANN SCHAD REINSBURGSTRASSE 111 B 70197 STUTTGART

USt.-IdNr.: DE271386873 Fon: 0711/6150682 Mobil: 0172/7277046 Fax: 0711/787816-10

info@ifgs-schad.de

Datum: 31.01.23

E-Mail:

Hermann Schad · Reinsburgstraße 111 b · 70197 Stuttgart

Kauffmann Theilig & Partner Freie Architekten PartGmbB Frau Shalimar Rennhofer

per E-Mail: moehringer-vorstadt@ktp-architekten.de

Erdbau, Grünflächen, Versickerung

Projekt: Wohnpark beim Heiligental (Grenztäle)

Sehr geehrte Damen und Herren,

zunächst wird geprüft, ob mit Wasserzufluss von außen zu rechnen ist. Das Baugelände (Lageplan auf Beilage 1, Luftbilder auf Beilage 2)) liegt an einem nach Norden abfallenden Hang zwischen den Straße *Beim Heilgental* an der Talseite (Nordwestseite) und der Straße *Beim Grenztäle* (Südostseite).

Aus dem B-Plan (Beilage 3) ist ersichtlich, dass an der Nordwestseite eine steile Felswand vorhanden ist und oberhalb der Felswand das Gelände dann mit einer Neigung von etwa 30 % nach Südwesten bis zur Straße *Beim Grenztäle* ansteigt. Ebenfalls auf dem B-Plan sieht amn, dass an der Ostseite, dem Abfall zum *Rupfentäle*, ein Graben verläuft, der Wasser von der Bergseite aufnimmt.

Von der Bergseite her kann kein Wasser auf das Baugelände fließen, da der Hang nahezu vollständig bebaut ist und zwischen dem Wohngebiet *Grenztäle/Leibertäle* und der neuen Hangbebauung die Straße *Beim Grenztäle* liegt.

Von Süden und Südwesten her kann kein Wasser auf das Baugelände fließen, da das umgebende Gelände sich deutlich unterhalb der Neubaufläche befindet.

Es muss also nur das Niederschlagswasser durch Regenereignisse geprüft werden. das unmittelbar über der Neubaufläche niedergeht. Für die Versickerung bei einem Starkregenereignis werden folgende Annahmen getroffen:

Fläche einer Wohneinheit ist 12 m breit und 15 m lang \rightarrow 180 m². Davon sind 45 + 12 = 57 m^2 überbaut bzw. werden direkt entwässert.

Auf 123 m² Fläche gibt es Niederschlag. Bei einem Starkregenereignis mit 10 l/m² ergibt sich eine Kubatur von 12,3 m³. 50 % werden direkt von der Bepflanzung aufgenommen oder versickern sofort im oberen Bodenbereich, so dass noch 6 m³ abfließen.

Bei 12 m Grundstücksbreite und einer Regendauer von 0.5 h ergibt das $6/(12 \cdot 0.5) =$ 1 m³ pro lfdm Grundstück und Stunde. Die theoretische Eindringgeschwindigkeit (Filtergeschwindigkeit) beträgt 1/3.600 = 0,00028 m/s.

Die durchlässige Schicht hinter der talseitigen Stützkonstruktion hat einen k_f -Wert von 0,001 m/s. Das Regenwasser wird also zügig versickern, ohne dass besondere Maßnahmen notwendig sind.

Zur Sicherung der Bäume kann eine Mauer aus Gabionen oder großen Blocksteinen errichtet werden (Beilage 4). Wenn die Mauer bzw. die Gabionen konsequent mit Einkornbeton hinterfüllt werden, ist die Standsicherheit gegeben (Beilage 5).

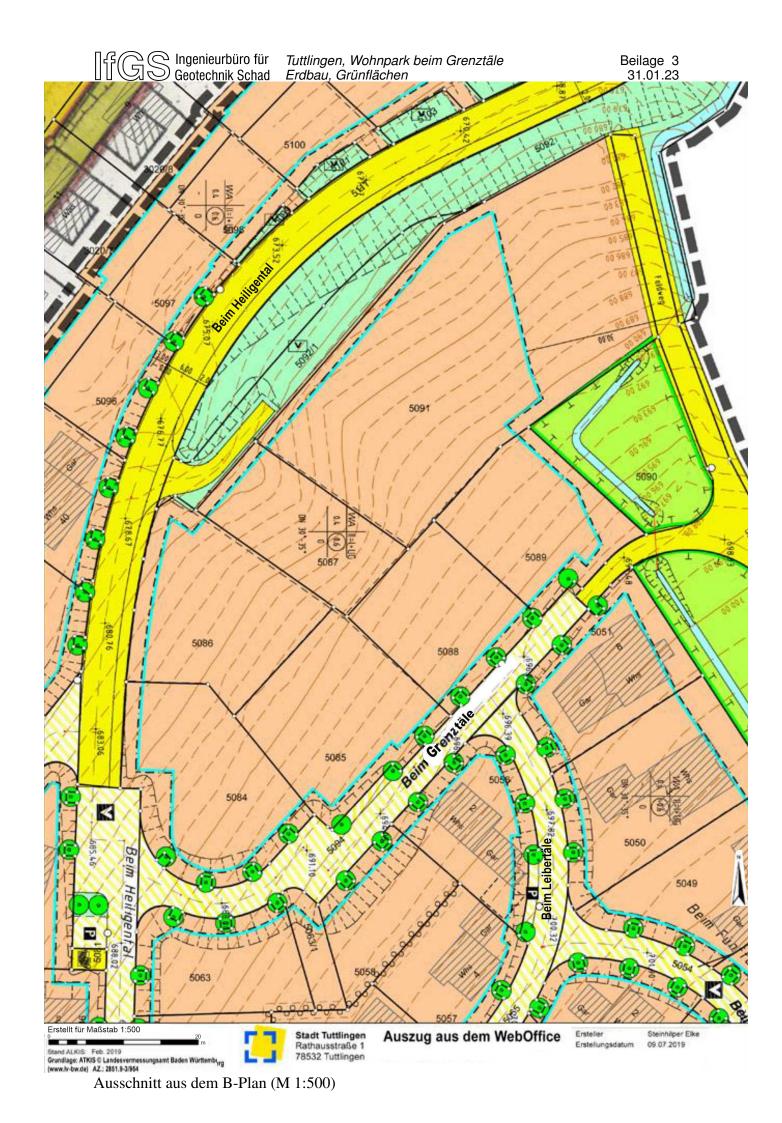
Für Rückfragen stehe ich gerne zur Verfügung (Tel.: 0172 / 727 70 46).

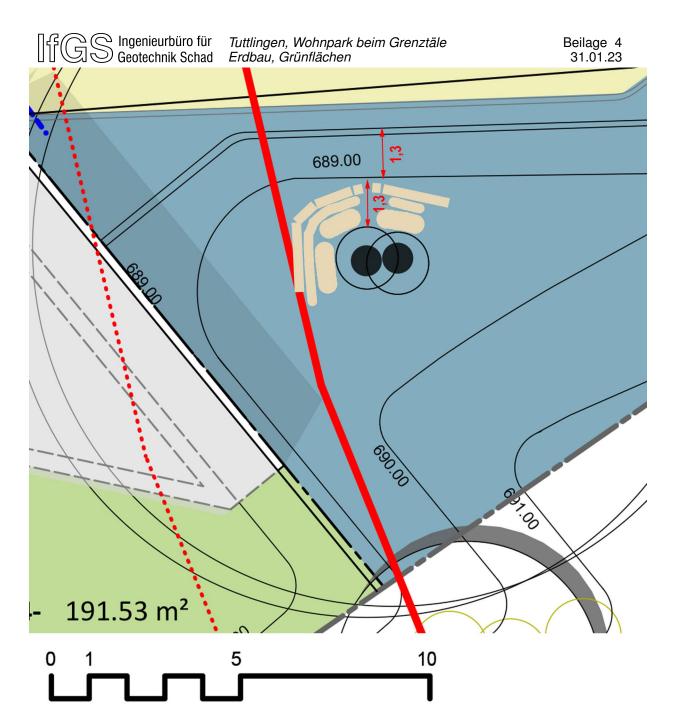
Mit freundlichen Grüßen

H. School

Dr.-Ing. habil. Hermann Schad

Beilagen:

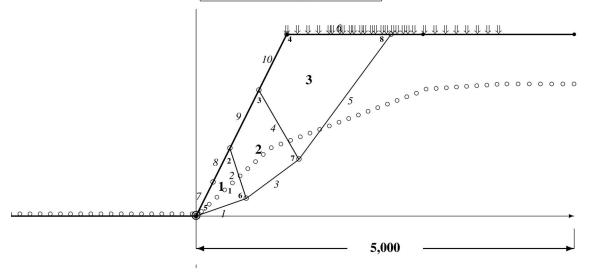

- 1. Lageplan (M 1:750) des Baugeländes
- 2. Luftbilder von (M 1:1.250) aus den Jahren 2002 und 2019
- 3. Ausschnitt aus dem B-Plan (M 1:500)
- 4. Skizzen zur Sicherung der Bäume mit Gabionen oder Blocksteinmauer
- 5. Standsicherheitsberechnung für die Mauer



Lageplan (M 1:750) des Baugeländes

Luftbilder von (M 1:1.250) aus den Jahren 2002 und 2019

Der Höhenunterschied von 2 m wird auf 1 m Länge durch 2 Reihen Gabionen oder 3 Reihen Steinblöcke überwunden. Das ergibt eine mittlere Neigung von 2:1 (63°). Das ist eine noch begrünbare Böschung.



Skizze zur Sicherung der Bäume mit Gabionen oder Blocksteinmauer

Ausnutzungsgrad $\mu=0.787$ Standsicherheit $\eta=1.271$

Sch	ichtparar	neter $\gamma_{\rm I}$	Vasser	= 10,00
Nr.	γ_f	γ_r	φ	c
1	21,000	21,000	24,800	8,000
f_{ve}	$r_{t.} = -$	-1,000	$f_{hor.}$	= 0,000

M 1:50 (beim-g1)

RAENDER Datei:beim-gl Zielfunktion bei der Optimierung ist Standsicherheit/Ausnutzungsgrad

THE PER DECEL SCIENCE OF DETAILS OF SELECTION OF SELECTIO																
Rand	Тур	Kı	10-	Scher-		Kraefte										
		te	en	parameter		⊥ zum Rand		= zum Ra	Komp	. von Q	U_{gof}					
		i	j	φ	c	N'	U	$N' \cdot \tan \varphi_{mob}$	$c_{mob} \cdot l$	Q_x	Q_y					
1	umg	5	6	24,8	8,0	+10,144	+1,062	-3,687	-4,420	0	0	0				
2	int	2	6	24,8	8,0	+5,820	+0,453	+2,116	+4,381	0	0	0				
3	umg	6	7	24,8	8,0	+12,720	+2,977	-4,623	-5,457	0	0	0				
4	int	3	7	24,8	8,0	+8,437	+0,318	+3,067	+6,639	0	0	0				
5	umg	7	8	24,8	8,0	+16,834	+0,579	-6,119	-12,918	0	0	0				
6	ver	8	4	0	0	-3,215E-13	0	0	0	0	0	0				
7	gof	1	5	0	0	0	0	0	0	0	0	+0,004083				
8	gof	2	1	0	0	0	0	0	0	0	0	0				
9	gof	3	2	0	0	0	0	0	0	0	0	0				
10	gof	4	3	0	0	0	0	0	0	0	0	0				

OBERFLAECHENLASTEN Datei:beim-g1

	Nr.	iakt	x_a	y_a	x_e	y_e	$q_{x,a}$	$q_{y,a}$	$q_{x,e}$	$q_{y,e}$
ſ	1	1	+1,200	+2,400	+4,000	+2,400	0	-5,000	0	-5,000
	2	1	+1,800	+2,400	+2,800	+2,400	-10,000	0	-10,000	0

ELEMENTE Datei:beim-g1

El.	Knoten			Verschieb.		Flaeche	Gewicht	Wichte	Anker		Kraefte						
	i	j	k	l	m	n	v_x	v_y			γ	$A_{x,mob}$	$A_{y,mob}$	P_x	P_y	O_x	O_y
1	1	5	6	2			-1,03	-0,36	+0,24	-5,13	+21,00	0,00	0,00	0,00	0,00	0,00	0,00
2	2	6	7	3			-0,92	-0,68	+0,66	-13,95	+21,00	0,00	0,00	0,00	0,00	0,00	0,00
3	3	7	8	4			-0,74	-1,00	+1,50	-31,55	+21,00	0,00	0,00	0,00	0,00	0,00	-6,89

KOORDINATEN Datei:beim-gl

KEM-PUNKTE										
x 0,224 0,447 0,830 1,200 0,000	0,663 1,360 2,578									
y 0,447 0,894 1,661 2,400 0,000	0,232 0,748 2,400									
OBERFLAECHE VON SCHICH	OBERFLAECHE VON SCHICHT 1									
x 0,000 1,200 3,000										
y 0,000 2,400 2,400										
SICKERLINIE										
x 0,072 0,994 3,041 4,110										
y 0,027 0,869 1,643 1,711										

Standsicherheitsberechnung für die Mauer